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A drifting ice cover on the surface of the sea is considered. The ice cover consists of ice floes having various 

sizes, shapes, and strength properties. For sufficiently rapid and small compressive-tensile loads, each ice 

floe behaves as an elastic body and its deformation can be described by the model of a linearly elastic Hooke 

body. At higher loads, the ice floes break-up [l]. 

If the ice floes are located uniformly on the surface of the water and the relative velocities of adjacent ice 

floes are small, the motion and deformation of the ice cover can be described as a continuum with a 

visco-elastoplastic rheology [2-4]. The plastic prdperties are associated with irreversible changes in the ice 

cover due to the shifting and breaking-up of separate ice floes as they interact and form into hummocks. The 

viscous properties are manifested when inelastic collisions between ice floes become the main form of 

interaction in a particular area of the sea surface; such collisions occur where the drift velocity gradients are 

high and the ice cover is sufficiently sparse. Elastic stresses may arise in a compacted ice cover. 

A model of an ice cover with elastoplastic rheology is proposed. One-dimensional discontinuous solutions 

of the model equations are considered. The problem of the collision of two ice fields of different 

compactness and the problem of condensation of a drifting ice cover near a solid wall are solved. 

1. CONSIDER an ice floe floating on the surface of water. There are no surface waves in the water and 
the ice floes move in the horizontal plane. The main forces that impel1 the ice floes are forces of 
atmospheric and oceanic origin and the forces of interaction with surrounding bodies. 

We define the Cartesian coordinate system x 1, x2, z, where z is directed vertically upward. The 
equations of continuity and momentum, integrated across the thickness of an ice floe, are written in 
the form 
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Here p is the thickness-averaged density of the ice floe and h is the thickness, u = (u, , u2, 0) is the 
velocity vector of ice particles averaged over the ice floe thickness, fi is the Coriolis parameter, S,, 
dSr are an arbitrary area on the ice floe and its boundary in the plane z = 0, F, is the force applied to 
the part of the boundary with the outer normal n and F are the external forces exerted by the 
atmosphere and the ocean. 

System (1 .l) is not closed and it must be augmented with rheological relationships that define the 
dependence of F, on the strain parameters of the ice with boundary conditions on the edge of the ice 
floe. Note that the nature of the forces acting on the edge of the ice flow may be different from the 
stresses within each floe. 
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2. Consider an ice field floating on the surface of the sea and consisting of separate floes that may 
interact with one another. The motion and the deformation of each floe are described by Eq. (I-1). 

In the plane z = 0 define the function f(xr , x2, t) by the following rule: 

f= 
I 
1, if there is ice at point (x1, x2), 

0, if there is no ice at point (xI, ~2). 

multiplying both sides of Eqs (1.1) by f, we obtain 

P-1) 

Here S is an area in the plane z = 0 and dS is the bonnda~y of this area. Iff& 1 on S, then there are 
both ice floes and clear water space in S. 

Equations (2.1) differ from (1.1) in that the expression for F,, in (2.1) contains forces of 
interaction between ice floes. 

Partition the area S into elements S, and the boundary aS into corresponding elements 1s. 
Applying the mean-value theorem to (2,1)? we obtain 

(2.2) 

Equations (2.2) contain the values of the discontinuous functions phf, phfi , . . . averaged over S, 
and I,. If the characteristic scafes of variation of the mean values of p, h, f* u, F, , F substantially 
exceed the hori~outal scale of S, , then S, may be treated as the element dS of some continuum on 
which sufficiently smooth functions p, la, A, u, F, , F are defined; the values af these functions on dS 
are equal to their mean value on the ~orres~nding element S, . The function ffxr f x2, tjt is the mean 
value of A(xl, x2, t) and it is called the compactness of the ice cover. Note that the ice floes included 
in the element dS may be of different thickness. The mean thickness is assumed to change slowly on 
passing from the element dS to adjacent elements. 

Contrary to classical statistical physics [5], this model does not require that the element dS contain 
a large number of ice floes. This condition is replaced with the condition of uniform distribution of 
ice floes over the areas S, and small scatter of their relative velocities. This is attributable to the 
strong dissipation of energy in the ice cover-water system due to the interaction of the ice floes with 
water and with one another through inelastic collisions [l, 21. If the forces F impehing the ice do not 
change within the area element dS, then eventually the velocities of all ice floes in dS are equalized, 

Under our assumptions, Eqs (2.2) may be rewritten in the form 

(2.3) 

To construct the continuum model of the ice cover, we need to define the relation between the 
stresses mB and the strain parameters that reflect the physics of the interaction between ice floes and 
the deformation of each ice floe separately, In constructing the rheological relationships of the 
modei, we will consider only fairly rapid processes, when stress relaxation can be ignored and each 
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ice floe may be regarded as a linearly elastic Hooke body under small loads [l, 21. As the loads 
increase, the ice floe breaks-up. 

From the equation of continuity and the definition of the strain tensor cij = (awiaxj+ dwjlaxi)/2 
we obtain 

2e=l-p&,A,/(phA), a=-‘/&i (2.4) 

The variables with a subscript of zero correspond to the parameters of the ice cover in the 
undeformed state. 

It follows from (2.4) that tensile-compressive strains of the ice cover may produce changes in p, h 
and A. We will divide these strains into reversible and irreversible (plastic) strains. Reversible 
elastic strains change p, leaving h and A constant. Plastic strains are subdivided into condensation 
(compaction) and hummocking. Condensation produces changes in p and A, while h remains fairly 
constant. Hummocking changes all ice cover parameters p, h and A. For elastic strains and 
condensation, we respectively obtain from (2.4) 

2e=l-p&r, 2e=l-p,A,/(pA) (25) 

3. We identify four phase states of the ice cover: (a) dispersed, (b) compacted and (a) formed into 
hummocks and (p) not formed into hummocks. Ice in states (a) and (b) may be formed into 
hummocks or not. Collisions are the main form of interaction between ice floes forming a dispersed 
ice cover. Each ice floe floats on the surface of the water so that it can move only inside a certain 
neighbourhood without touching the nearby ice floes. The interaction of ice floes forming a 
compacted ice cover involves mutual compression and friction at points of contact. Note that in 
reality the state of the ice cover may be a mixture of the above-mentioned basic states, in which case 
we accordingly consider the predominant type of interaction of ice floes in the observed section of 
the ice cover. 

The following phase transitions are allowed: (a) (o), @)“,(b)(o),(~),(b),(p)-, (b)(a). The 
transition (a.)4 (p) is not allowed. The transition (a)-+ (b) is obviously associated with compressive 
strains. It can be compared with the formation of a solid porous skeleton in soils [6]. We assume that 
for any section of a dispersed ice cover the transition to the compacted state occurs at a certain 
compactness value A, that depends on the shape, the size, and the relative location of the ice floes 
in that section. The transition (b)-+ (a) occurs under tensile strains for p = -nb d 0 (p = - 95~~~). 
The pressure ?rb # 0 when the ice floes are linked. 

We will write the hummocking condition for a compacted ice cover in the form 

]r”]=f,(a”, ‘4, h) (3.1) 

where T, and o, are the tangential and the normal components of the stress on an area element with 
the normal n = (n, , n2). 

For a dispersed ice cover, we take 

aij=dh/dt=dp/‘dt=O (3.2) 

System (2.3) and (3.2) is closed and it describes the behaviour of the ice cover for A <A (e, , &), 
where 5;i,* are the Lagrangian coordinates of the ice cover element. 

Loading of a compacted ice cover produces both elastic and plastic strains. The plasticity 
condition is taken in the form 

]r,,]=(o,,-Jr*ltg r(A. h) (3.3) 

p=n,(-4. h) (3.4) 

where y and rrp are the angle of internal friction and the pressure for which dAldt>O, dhldt = 0 for 
A<A,, =s 1 and dhldt>O for A = 1. If (3.4) does not hold, then dAldt = dhldt = 0. 

Elastoplastic shear strains are described by the equations [4,6] 
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ds --__t __- 
dt ( du, au, L 

ax, ds, 1 $- hs := p 
au., du, \ 

a2,_-- 4 
(3.5) 

where s = % (uir - 1.7~~), r = ui2, the multiplier A = 0 if (3.3) does not hold and is expressed in terms 
of s and 7 when (3.3) is satisfied and p = p(A, h) is the elastic shear modulus. 

Some plastic effects associated with the description of the slip-line configuration in an ice cover 
under quasisteady loads have been analysed in [4]. In this paper, the main focus is on condensation 
processes in an ice cover under compression. Hummocking is not considered and we assume that 
(3.1) does not hold and dhldt = 0. Strain irreversibility during condensation is associated with the 
breaking-up of small ice floes and of the edges of large ice floes under compression. The broken ice 
fragments are squeezed out into clear water spaces and onto the surface of surrounding ice floes, 
slightly changing their thickness. This process can be compared to the destruction of the soil 
skeleton under compression [6]. 

The approximate dependence of the pressure p on the strain deviator is shown in Fig. 1 in the 
form p = p (p, A) for nb = 0. The feasibility of this representation follows from (2.6) and (2.7). The 
curve M,QM,, is described by the equation 

P’X, (4 ) (3.6) 

The quantity a,(A) is the pressure at which plastic condensation of a compacted ice cover with 
compactness A occurs. 

Assume that some element of a dispersed ice cover changes to a compacted state when A = A, at 
the point M, (Fig. 1). The compactness increases under compression, and for an arbitrary point Q 
of the curve M,QM,, we have the condition 

P’PW (&), &=-A*. (3.7) 

As the load decreases, the ice cover behaves elastically and its compactness A, does not change. 
Load reduction top = 0 corresponds to the curve QQa in Fig. 1: 

p=n(&, P) (3.8) 

From (3.6)-(3.8) it follows that pCr is given by the equation 

JrP (-4”) =Jc (A,, Per) (3.9) 

The ice cover does not resist further tension and directly passes into the dispersed state. 
If tension changes to compression, the ice cover changes from the dispersed to compacted state 

for A =A,. Thus, for ice in the state reached by load reduction from the point Q, we have 

FIG. 1. 
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A, = A,. Further compression obeys the law (3.8) up to the point (3.9), after which the ice cover 
undergoes plastic condensation according to (3.6). Under pure compression, hummocking starts at 
thepointM,,forp=n,(A,,),A=A..Sl. 

We will assume that the functions rrp (A), T (A, p) satisfy the conditions 

d2% ,o dn, 6% 

dn2 ” ’ 
- 20, 
dA 

->o, ap* ’ 
*>0 ap ’ (3.10) 

The first two conditions in (3.10) follow from the definition of the tensor aii given after Eqs (2.3) 
and from intuitive considerations, which indicate that as the compactness increases the mean 
contact area between ice floes increases, lower stress concentration is observed under compression 
and the ice floes can withstand higher loads F, . 

The pressure ITS (A, h) at which irreversible strains occur in the ice cover was introduced in [3]. 
The following empirical formula was proposed for this pressure based on a comparison of numerical 
calculations with observations in nature [3]: 

n,,(A, h)=p+hexp[2O(A-l)] (3.11) 

p* = 5 x lo3 N/m2 

The curve (3.11) obviously satisfies the first two conditions in (3.10). To prove the last two 
conditions in (3.10), note that in a compacted ice cover ice floes may have contacts in the plane z = 0 
either along sections of finite length or at isolated points. If we assume that the ice floes show elastic 
behaviour under rapid loading, then for a point contact between two ice floes we have [7] 

F=kl”ll (3.12) 

where F is the compressive force, 1 is the distance to which the ice floes approach under the action of 
F and k is a coefficient of proportionality that depends on the geometry of the ice floes near the 
point of contact and their elastic constants. 

From (3.12) it follows that the macroscopic pressure in the ice cover, consisting of elastic ice hoes 
with point contacts, is of the order of Ed’*, where E is the deviator of the macroscopic strain tensor. 

If the ice floes have surface contact, we may assume that the dependence P(E) is linear under small 
strains. 

Thus, for small elastic compressive strains of the ice cover in the plane .z = 0, we can propose the 
formula 

x(A, p)=k,(A) (p-po)‘j’+kZ(A)(p-po) (3.13) 

The coefficients kl (A), k,(A) depend also on the size, the shape, and the elastic constants of the 
ice floes and on the frequency of point and surface contacts between the ice floes. The function 
(3.13) obviously satisfies the last two conditions in (3.10). 

In the limiting case A = 1, we can assume Hooke’s law for the generalized plane stress state [8] 

Eh P-P0 n(Lp)= 4 - 
- v2 PO 

(3.14) 

where E and v are Young’s modulus and Poisson’s ratio of ice. These constants are of the order of 

PI 
E = 10’ N/m*, vzo.3 (3.15) 

We see from the above scheme that the stress-strain state of compacted ice and the conditions for 
its transition to a dispersed state under compressive-tensile loads are determined by specifying the 
functions (3.6) and (3.8) and the initial state in the plane (p, PA), i.e. the quantities A, and A,,. 

4. We have identified two states of the ice cover: dispersed and compacted. It is interesting to 
examine the conditions when the transition from one state to another and the change of ice 
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parameters occur in a discontinuous jump within the framework of the rheological model proposed 
in Sec. 3. 

Considering one-dimensional problems of the dynamics of ice of a homogeneous thickness 
h = const with time constants T~0-i in Eqs (2.3), we may set d’ldt = dldt and write these 
equations in the form 

-g (PA) + -g (pAu) = 0 

fw ( g+,g ) =--~+FA 

The system of equations (4.1) with relationships (3.6)-(3.9) is closed. 
The relationships across the discontinuity for (4.1) are written in the form [8] 

p-A_(IL-D)=p+A+(u+-D) 

p-+hp-A-u-(u-m-D)=p++hp+A+u+(u+-D) 

P*=P(p*, A*) 

(4.1) 

(4.2) 

i.e. in the form of laws of conservation of mass and momentum, D is the velocity of propagation of 
the discontinuity and the subscripts plus and minus are assigned to the variables on the right- and 
left-hand edges of the discontinuity. 

From conditions (4.2) we obtain 

D=u_kD* (4.3) 

u~=u_*((l-p-A-/(p+A+))D*~A,, P*) (4.4) 

A+P+ P+- P- D*’ = - 
hA-p_ p+A+ -P-A- 

From (3.10) it follows that D**sO. 
In the coordinate system attached to the discontinuity, we obtain 

u-=&D*, u+=~p_A_D*l(p+A+) (4.5) 

For p-A_ <p+A+, the upper sign in (4.5) corresponds to condensation discontinuities and the 
lower sign to rarefaction discontinuities. For p-A_ > p+A+ the reverse correspondence applies. 

Passing to the limits as p+A++p_A_ in (4.3) and (4.4), we obtain 

D-u&c, c*=h-‘dpld(pA) (4.6) 

(c is the velocity of propagation of small perturbations in an ice cover at rest). From (3.10) and (4.6) 
it follows that c2 increases as pA increases along the plastic and purely elastic strain branches, which 
are defined by the functions 1~ and T,, . Elastic and plastic condensation discontinuities are therefore 
evolutionary, whereas the rarefaction discontinuities are unstable [lo, 111. 

The law of conservation of energy across the discontinuity is written in the form 

p_u_+‘/,hp_u_*A_( u_ -D) +e=p+u++‘/,hp+u+*A+( u+-D) (4.7) 

where e is the energy released or absorbed in the discontinuity. From (4.5) and (4.7) we obtain 

e=*‘/2D+(p++p-) (p-A--_p+A+)l(p+A+) (4.8) 

We see that condensation discontinuities propagate with release of energy, while rarefaction 
discontinuities absorb energy for their propagation. The energy released by a condensation 
discontinuity causes ice breakage, produces chaotic motion of the ice, and is converted into heat. 
Our analysis indicates that only condensation discontinuities are possible in nature. 

Formulas (4.4) for purely elastic discontinuities in a compacted ice are written, apart from terms 
of the order of U( (p+ - p-)/po), in the form 
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R,: u+=u_+p,-‘(pi-p_)D*(A, p,) 

D**r;h-‘cn+-n-)/(p+-p-), n,=n(A, p,) 
(4.9) 

For plastic condensation discontinuities, we may assume that strains associated with density 
changes are small compared with strains associated with compaction changes. From (4.4) we thus 
obtain 

R,: u+=u_~(l-A_/A+)O,*(A,) (4.10) 

DOLL G, t -%. - 

p&A_ A+--_ ’ % f = d4:) 

From (4.9) and (4.10) we obtain for the velocities of elastic and plastic waves of low intensity, by 
passing to the limit p++p-, A++A_ 

1 h(p, A) 1 dn,W c2 = hA ap , cp* = p,h d* 
(4.11) 

Let us estimate the velocities c and cP from formulas (3.7), (3.10) and (3.11) 

c(p, A=1)~1O*Ci&rl/S, c,(‘4)=G&?xp(20(A-l)] m/s 

We see that in the absence of point contacts between ice floes, cP G c. 
Let us consider the discontinuity between dispersed and compacted ice. Suppose that the 

dispersed ice is located to the left of the discontinuity. In formulas (4.4) we thus put 

p-=0, p-‘PO 

If the compactness of the dispersed ice increases across this discontinuity to A *, then making the 
same assumptions as for type-R, discontinuities we obtain from (4.4) 

R,: u+=u_.f( I-A_/A*)D,*(p+, A*, A._) 

@=A, JI (4, P,) 
p&A_ A,---- 

For p+ = pCr we obtain a type-R, discontinuity of maximum intensity: 

D,; u+=u_f (I-A_/A*)D,,* (A*, A-) 

A 0:; = -2 XP (A*) 
p&A_ A, - A- 

Strong condensation discontinuities may exist in a dispersed ice cover. Assume that the 
compactness of the ice cover is A_ <A, and A, = A, (Fig. 1). Let us consider the various 
discontinuities that may link the dispersed state, with parameters p. and A, with the compacted state 
with parameters per (AN), AN (the point N in Fig. 1). Draw the line NQ to its intersection with the 
axis pA at the point poANo. For A_ <ANo the transition from the initial state to the point N may 
occur by the discontinuity 

R,: u+=u_~(l-A_/A+)D,*(A,) 

+d!L np (A,) 
p&A_ A+- A_ 

If A- E (A,‘, AQ), then the transition from the initial state to the point N cannot be achieved by 
one discontinuity. 

We see from formulas (4.4) that the velocity D of the discontinuity is proportional to the square 
root of the slope of the segment joining the states before and after the discontinuity on the curve 
P =P(P,A) i n F ig. 1. The least velocity of propagation is therefore observed for type-R, discon- 
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tinuities between dispersed and compacted ice. The difference between the ice drift velocities 
before and after the discontinuity is close to zero and we have the condition 1 D* ( 6 1 z+ 1. 

5. Let US consider the problem of the collision of two compacted ice fields at a time t = 0. We will 
assume that the contact line of the two fields is along the line x = z = 0. The parameters of the ice 
cover are Al , ul>O, po,pl=O forx<O, t=O and AZ, u2<u1, po,p2=0 forx>O, t=O. The 
motion of each ice field is described by the system (4.1). The rheology of the medium is defined by 
the functions nl(A, p), np,l(A), A,,J for x<O and 7rz(A, p), zp,2(A), A**,2 for .x>O. 

All the conditions of the problem are easily satisfied if in the initial stages of motion we ignore the 
external forces F in (4.1) and assume that at t= 0 there is a system of type-R, and type-R2 
discontinuities originating from the point x = 0 whose parameters are related by (4.3), (4.9) and 
(4.10). The following discontinuity configurations are possible: 

1. If the equation 

po(~I-~~)=(p21-po)~21~p2’)+~p,‘-_po)~*’(pi~) 

(Q’(p*‘)=D*(A,, p*‘, PO), D,‘(p,‘)=D*(&, Pai, PO)) 

has a solution that satisfies the conditions 

(5.1) 

n=%(A0 Pjl)=nz(A~, Pz')~mini(Jb,i(&)), i-l, 2 (5.2) 

then at t = 0 two type-R, discontinuities originate from the point x = 0. 
This case is shown in Fig. 2. The lines nil, r2r correspond to the two discontinuities and are 

described by the equations 

Z=D1,2t, Di=U~+(-1)‘Df’(p~) (5.3) 

The line r is the border between the ice arriving in opposite directions from the two x half-axes and it 
is described by the equation 

.z=ut (5.4) 

where u is the drift velocity of the ice inside the angles cx 2, p2. The compactness of the ice is Al 
inside the angles OL~,~ and A2 inside the angles p1,2. The pressure n and the drift velocity u in the 
region (~2, l32 are determined from relationships (4.9), (5.1) and (5.2). The trajectories of the ice 
cover elements are shown by the dashed lines in Fig. 2. 

2. Suppose Eq. (5.1) has a solution, but conditions (5.2) are not satisfied and 
mini(np,i(Ai)) = ~~,l (Ai). In this case, the ice cover arriving from x<O is compacted on collision. 

If the equation 

Ul---uz=( (Pz’-Po)~,‘(p~‘)+(p,,,,-p~)x 

x~~‘(Pc~,~))/po+(~,2-A,)D,“(A,2)/A,’ 

(w(4*)=~,*(Ai, A,‘)) 

(5.5) 

X 
FIG. 2. 



354 A. V. MARCHENKO 

0 X 
FIG. 3. 

has a solution that satisfies the conditions 

Jr=J-r,‘,t(A,‘)=n,(At, pz’)~x,,(A,) (5.6) 

that at t = 0 two type-RI dis~ont~nu~ties and one type-R;! discontinuity originate from the point 
x = 0. 

This case is shown in Fig. 3. The lines rr’, rzl correspond to the type-R, discontinuities and are 
described by the equations (5.3), where 

&=k-W(&r,*), D,=u,+D,‘(p,‘) 

The line rr2 corresponds to a type-R2 di~ontinuity and is described by the equation 
x = (uI1 - D,2(A12))t, where uI1 is the drift velocity in the region 02, The line r is described by Eq. 

(5.4), where u is the drift velocity in the regions 01~) p2. The compactness of the ice cover is A, and 
A2 in the regions OL~,~ and pr2, respectively; the compactness in o3 is A12. The densities in cy2 and p2 

are pcr.l and ~2~) respectively. The pressure in o2 is IT ,r (A12), the pressure in o3 is nP,l (A12), and 
the pressure in p2 is nz(p2t). The values of U, Al’, p2’are determined from (4.9), (4.10), (5.5) and 
(5.6). 

3. If conditions (5.2) are not satisfied and mini(TP,i(Ai)) = T~,~(A~), then the ice cover arriving 
from the positive x half-axis is compacted on collision. This case is analysed in the same way as case 
2. 

4. Assume that Eq. (5.5) has a solution, but conditions (5.2) and (5.6) are not satisfied. In this 
case, the ice cover arriving from the directions of both x half-axes is compacted on collision. 

If the equation 

u,--I&?= ( (prr.2-- p,)&‘(p,,,z) + (PC,,,-p0)X (5.7) 

xB,‘(p,,.,))/~oS.(Az’-nz)Dz’(AzZ)lA22+ 

~(~,z-~,)D,z(A,2~1A,2 

(&‘(ii,‘) =&.*(A,, A,“)) 

has a solution that satisfies the conditions 

n=np.l (A,‘) zn,,z(Az’) gmini(n,,i(A**,J ) (5.8) 

then at t = 0 two type-RI discontinuities and two type-R, discontinuities originate from the point 
x = 0. 

This case is shown in Fig. 4. The lines rll, r21 correspond to the type-R1 discontinuities and are 
described by Eqs (5.3), where 

~*==~,+(-l)iD1’(pGt.o 

The lines r12, Q* correspond to the type-R, discontinuit~es and are described by the equations 
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Fs.4. 

where url and uzl are the drift velocities inside the angles 012 and pz, respectively. The line r is 
described by Eq. (5.4), where u is the drift velocities inside the angles 01~ and p3. The compaction, 
the density and the pressure in OL~,~ and PI,* are Al, pCr,l, T~,~(A,) and AZ, pCrV2. TV,*, 
respectively. The compactness and the pressure in cz3 and p3 are A12, np,l (Al21 and AZ*, 7rp,*(A2*), 
respectively. The values of uil, u2r, U, A,*, AZ2 are determined from the relationships (4.9), (4.10), 
(5.7) and (5.8). 

If condition (5.8) is not satisfied, the colliding ice floes form into hummocks. 
The problems of the collision of two dispersed ice fields and of a dispersed ice field with a 

compacted field are analysed similarly. The discontinuity configurations obtained in these cases 
include waves of types RI-R,. 

Note that when two dispersed ice fields.of low compactness collide, a complex drift pattern may 
develop in the interaction region, with different ice floes acquiring widely differing velocities, Our 
model is therefore inapplicable in this case. For sufficiently high compactness of the colliding fields, 
a compacted ice region may form near the contact line. 

6. Let us consider in more detail the collision of two dispersed ice fields, for which the functions TV, 
TT(A, p) and the quantities A* and A** are equal. The parameters of the ice arriving from the negative x 
half-axis are given a subscript of one and the parameters of the ice arriving from the positive x half-axis are 
given a subscript of two. We assume that u1 > 0, u1 > u2 and the equation 

(u,--u*)A+=(A*-A,)D~,+(A*-A~)D~~~, &:i=D,‘(p, A*, Ai) (6.1) 

has a solution that satisfies the condition 

nfp, A.)Grr~(A*) (6.2) 

In this case, a narrow strip of ice with compactness A* is formed after collision; the boundaries of this strip 
are lines of discontinuity of type Rs. An illustration of this case is given in Fig. 2, with the lines rrr, rz’, r 

described by Eqs (5.3) and (5.4) where Di = ui + (-l)*DTj and u is the drift velocity inside the angles (Y? and 
&. The compactness, the density, and the pressure inside ~2 and & are A*, p, ~(p, A,), respectively, The drift 
velocity is determined from the relationships on the R3 discontinuity: 

u=u,-D;;,(i-A,/&) (6.3) 

With time, the pattern of motion will change, as the effect of the external forces on the ice cover are felt. We 
write these forces in the form 

F-@u(A) Vz-p,.C,u (6.4) 

The first term is the eddy friction of the wind with the ice-covered water surface [lZ], where pa ~ C, , V are the 
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FIG. 5. 

air density, the coefficient of friction and the wind velocity; the second term is the Newtonian friction exerted 
on the ice cover by the bulk of the water at rest [12], where pw . C, are the water density and the coefficient of 
friction. 

The form of the function C,(A) based on experimental data [13] is shown in Fig. 5. The shape of the curve 
C,(A) is explained by the fact that the roughness of the water surface totally free from ice or totally covered 
with ice is Iess than the roughness of the water surface partially covered with ice. 

From relationships (4.1), (6.4), and (6.5) it follows that the steady drift velocity of an ice cover with 
homogeneous compactness A = const is given by 

p&z(A) 1/2 
u,(A. V) = -- 

P,C, ’ 
V=const. 

Hence we see that the collision of two ice fields may be caused by the different effect of wind velocities on ice 
with different compactness values. We accordingly assume in our problem 

Ui=Ua(A<, V). Al= (A.‘, A”). A2~(.4”, 1) 

Collision produces a strip of compacted ice with compactness A* E (A”, 1). The initial velocity u of this strip 
is defined by relationships (6.3) and falls in the range (~1, ~2). The water thus exerts a Newtonian friction on 
the ice strip, which acts to reduce its velocity. 

We will write the law of conservation of momentum for the strip as a whole and the laws of conservation of 
mass on the two sides of the strip F,* and r2’: 

d(uA.(Lz-L,))/dt=A,ui(u,-I,)+ 

+A2U*(o,-t12)+(pok)-‘(Lz-L*) (p.C,(A.)~2--p&ou) 

Ai(&-ui)=A.(Di-u) 

dL,ldt==n,. i=I. 2 

(6.5) 

Hence we obtain 
(,,,/(.A * drr 

-_. -._-- - = &(A*. V)-u 
nrrcu. df 

(6.6) 

As the initial value u(i = 0) we take (6.3). 
From Eq. (6.6) it follows that the velocity of the strip eventually tends to u,(A*, V) = u2, This means that 

the intensity of the discontinuity rzl tends to zero and the intensity of the discontinuity r,’ tends to a constant 
value, which is defined by the relationship for R3 with CL = ~1, A- = A,. 

7. Consider the problem of condensation of the ice cover near a solid wall. Suppose that an ice cover with 
constant drift velocity u>O and ~ompac~ess A meets a solid obstade at the point x = 0 at time t = 0, and its 
velocity instantaneously drops to zero at the point Y = 0. By the law of conservation of momentum, the loss of 
momentum leads to an abrupt increase in the pressure exerted by the ice cover on the wall, which in every 
special case is defined by Eqs (7.1), (7.3), (7.5), (7.7), and (7.9) given below. 

Assume that the ice cover is in the compacted state, i.e. A = A*. If the equation 

(7.1) 
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has a solution that satisfies the condition 

n(m, A)<%(A) 

then a type-R, discontinuity originates from the point x = 0 at t = 0. 

If the equation 

357 

(7.2) 

I (pc,-po)xp(“l) ‘!I 
,I = - ( 1 ( (A,--A) (n#~)-zt~W) “* 

_-_. + (7.3) 
PO )l p&AA, 1 

has a solution that satisfies the condition 

A,cA.. (7.4) 

then a type-R1 discontinuity and a type-R2 discontinuity originate from the point x = 0 at t = 0. In this case, the 
ice cover is condensed near the wall. 

If condition (7.4) is not satisfied, hummocking occurs near the wall. By measuring the pressures 7~ and nP and 
the velocity u, we can use relationships (7.1) and (7.3) to determine the dependences per(A), IT,(A), IT(~, A). 

Assume that the ice cover drifting to the wall is in a dispersed state with compactness A <A*. If the equation 

( iA*-A)n(p, ‘4,) “1 
u= -___-__ 

p&l. 1 * ) (7.5) 

has a solution that satisfies the condition 

n(p, A.) -Q,(A.) 

then a type-R3 discontinuity originates from the point x = 0 at t = 0. 
If condition (7.6) does not hold, then condensation of the ice cover occurs near the wall. 
If the equation 

(7.6) 

( 

@,--4)n,(A1) ‘h 
L1= ---- - -- 

p&AA, ) 
(7.7) 

has a solution that satisfies the conditions 

n,(Ar) 
.4,G4,,, ---.. < 

nJJ(n,)-n,(Jl*) 

A$-A 
(7.8) 

A,-A 

then a type-R, discontinuity originates from the point x = 0 at t = 0. 

If the second condition in (7.8) does not hold and the first condition is satisfied, then the pressure on the wall 
T,,(A,) is obtained by solving the equation 

( 

(A,-A)n,(A,) “, 
u= - 

p&AA, 1 
+ 

(AI-,4,) (n,(Ad-n,(A)) 

(- r p&A J, ) 

s 

(7.9) 

In this case, a type-R4 discontinuity originates from the point x = 0 at t = 0, followed by a type-R2 
discontinuity. The compactness of the ice cover rises to A* behind the first discontinuity and to Al behind the 
second discontinuity. 

If the first condition in (7.8) does not hold, hummocking of the ice cover occurs near the obstacle. 
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The problem of minimizing the volume of two- and three-dimensional structures, subject to certain stress 

constraints, which are known as the conditions of strength theory and are used in practice for various 

materials, is considered. The control is achieved by adjusting the shape of the boundary. Cavities inside the 

design region are allowed, and the shape of the cavities is also optimized. Dual problems, constructed for 

such optimal design problems, can be used for estimates of optimal or nearly optimal designs. Examples of 

dual estimates for three optimal design problems are considered. 

1. STATEMENT OF THE PROBLEM 

WE HAVE previously introduced [l] the notions of the design region and the feasible region, and 
proved existence theorems for the first and second variations of the displacements of the elastic 
region. We denote by O(s, A) the set of feasible regions R Cs1”, where fi” is the design region (here 
0 < X < 1 and s is an integer characterizing the smoothness of the boundary I of the region s1[ 11). 

Let us formulate the optimal design problem. Suppose we are given the shear modulus l.r., 
Poisson’s ratio v, and the yield point u. of the material, the external load vector F acting on the part 
of the boundary IF’, and the section of the boundary TU”, where the displacements of the elastic 
region are zero. It is required to find 

inf J (II), I = Sdx, mEO(s, A) (1.1) 
u 

where u = uiei is the solution of the integral identity 
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